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INTRODUCTION

The Kirkwood-Salsburg equation method, well developed for a two-body
interaction (see refs. 1 and 2), has also been applied for the investigation
of classical continuous systems with a multi-particle potential in refs. 3
and 4. But, in addition to the usual stability condition (2.3), these applica-
tions for many-body potentials demand cumbersome regularity conditions.
On the other hand, Brydges and Federbush,(5) see also ref. 6, proposed a
very elegant method of constructing the Mayer series which at the same
time leads to essential simplifications in the proof of its convergence. But,
unfortunately, an application of this method to the many-body interaction
gives rise to certain difficulties because there are too many tree graphs in
this context, see remark in ref. 6. Later, in ref. 7, the Borel summability of
the Brydges-Federbush-Mayer expansion for many-body potentials was
proved.
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The existence of a unique thermodynamic state for dilute classical systems is
proved for a class of multi-particle potentials under ordinary assumptions of
stability and integrability. Thus we do not use the cumbersome conditions of
regularity needed in previous publications for the many-body analysis. The
method relies on the Poisson measure representation and cluster expansion for
distribution functions.
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In this article we prove convergence of the Brydges-Federbush type
cluster expansion,(8) see also ref. 9, for dilute continuous systems of classi-
cal statistical mechanics with the many-body interaction satisfying ordinary
assumptions of stability and integrability. To prove this we use the Poisson
measure representation of correlation functions which was proposed in
ref. 10 and developed in refs. 11-13. This integral representation, which
from the physical point of view is exactly the integral over the densities of
ideal gas, allows us to apply a technique which is very close to the treat-
ment of lattice systems.

A short contents of this article is the following. In Section 1 we briefly
state some notions and formulae of the Poisson analysis needed for the
later exposition. In Section 2 we obtain a representation for correlation
functions of classical systems with a many-body potential by the Poisson
integrals. In Section 3 we construct cluster expansions and formulate the
basic results of the paper. And finally, in Section 4 we prove the con-
vergence of the cluster expansions and other results of the paper.

1. SOME REMARKS ON THE POISSON ANALYSIS

A detailed exposition of different aspects of the Poisson analysis may
be found in refs. 14-21, see also introductory sections of refs. 11, 13, 22. In
this section we are going to remind only some of the most useful definitions
and formulae which will be used later.

Definition 1. For any measurable ACR3, the Poisson measure
PZ(-) on the Borel a-algebra on the Schwartz space of tempered distribu-
tions S'(A) endowed with the strong dual topology is defined by the
following characteristic functional:
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where peS(A), <•, •> denotes the pairing in the sense of L2(A, dx), and
z > 0 is an intensity parameter.

Proposition 1. For any F e L p = L2(S'(A),dPA] and \A\ «x> the
following formula is true:
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Remark. Because of Proposition 1, the reader who do not want to
penetrate into the mathematical depths can always regard the integration
over the Poisson measure PA of an arbitrary functional F just as a con-
venient notation for the right-hand side of formula (1.2).

Using formula (1.2) it is easy to verify the following "cluster property"
of the Poisson measure:

Proposition 2. For all measurable X, X'<.A such that
X n X ' = 0 and for all F, F' e Lp

and

where xx is an indicator of the set X.
Next, defining the Wick regularization of a product of m Poisson fields

by the following explicit formula:

we claim that

holds in the weak sense for any FcLp (see refs. 23, 24, 11, 13, 25).

Proposition 3. For averages of regularized products of the
Poisson fields we have:

Finally, we will need the following generalized Wick theorem(13, 26) for the
Poisson fields:
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Theorem 1 (generalized Wick theorem). The product of regularized
products of the Poisson fields is equal to the sum of all the corresponding
regularized products with all possible "pairings" which connect the Poisson
fields from the initially different regularized products including the regular-
ized product without any "pairing", where the "pairing" of n Poisson fields
is defined by the following formula:

Examples.

Pay attention that the summands : q ( x 1 ) q(x2) q(x3): and '.q(x1) q(x2) q ( x 3 ) :
are absent on the right-hand side of the last formula because they contain
"pairings" connecting fields from initially the first regularized product.

Corollary 1. As the number of all the possible "pairings" of n
Poisson fields is less or equal than n!, it follows from the generalized Wick
theorem, definition (1.8) and Propositions that the average of a product
of regularized products of the Poisson fields contains no more than n! terms,
where n is the total number of the Poisson fields in all the regularized
products.

2. POISSON INTEGRAL REPRESENTATION FOR THE
CORRELATION FUNCTIONS

Let us consider the system of classical identical particles contained in
a certain finite volume A c R3 and interacting through the following many-
body potential
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where M > 2 and fixed. For such a system the potential energy of n par-
ticles located at points x1,..., xn is:

where by definition ( x ) 1 = (x 1 , . . . ,x n) .
We assume that for any p = 2,...,M the function Vp(x1,..., xp) is

measurable with respect to the usual Borel a-algebra on (R3)p and the
potential energy (2.2) satisfies the following stability condition:

Then the finite volume distribution functions of the grand canonical ensemble
can be represented(1,2) as the following absolutely convergent series:

where B is the inverse temperature, z the activity and

the grand partition function for the volume A.
In refs. 10 and 12 a representation of the function pA by the Poisson

integrals was obtained for a pair potential. Now we generalize that repre-
sentation to the case of M-particle interaction.

Theorem 2. Let V be a measurable function satisfying stability
condition (2.3), then the following formula is valid in the weak sense:
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where

and

Proof. With the help of formula (1.5), the expression (2.2) for the
potential energy of (m +n) particles can be written in the following form:

Making renormalization as in (2.7) and using formula (1.2), one can
rewrite (2.4) as follows:

Finally, the application of the generalized integration by parts formula
(1.6) to (2.8) gives (2.5). |

Remark. As we consider (2.5) in the weak sense, it is better instead
of (2.5) to write

3. CLUSTER EXPANSION

Let us fill IR3 with unit cubes A which are half-opened and half-closed
in an arbitrary way such that they are disjoint, i.e., A n A' = 0 if A = A '
and assuming that A and X1 are unions of a finite number of such cubes
construct finite sequences yn = (Y1,..., Yn), xn = (X1,..., Xn) of subsets of A
in such a way that Y1, = X1 and for any i > 2, Xi = Xi _, u Yi with Yi

representing from one to (M — 1) different cubes from ^>A\Xi-1 :
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Remark. Further on we always will consider only such subsets X of
R3 which are unions of a finite number of cubes A, denoting the corre-
sponding set of cubes with Dx.

Having in mind the structure of sets Y2,..., Yn, under the sum over Yi,
i = 2,..., n, we will understand the following expression:

where the factor 1/(| y,|!) appears from the fact that any permutation of the
cubes A1,...,A\Yi\ do not alter the set Yi.

Notation 2. For short let us also denote

assuming as usual2 that

Definition 2. As usual under a tree graph with n vertices we will
understand a function

such that n ( i ) < i for all i = 2,...,n, denoting by E i n : \ n \ = n the sum over all
such graphs.

The graphical representation of such a function indeed resembles a
tree or its branch. See for example Fig. 1.

Lemma 1. The "smoothed" finite volume distribution functions for
systems of particles with many-body interaction (2.1) satisfying stability
condition (2.3) can be represented in the following form

2 As usual in the sense that I=j= 1, and Ek = 0, i f j > k .
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Fig. 1. A tree graph. For this tree graph the number of vertices equals 9 and n ( 2 ) = 1, n(3) =
n(4) = 2, n(5) = n(7) = 4, (7(6) = 5, (7(8) =n(9) = 7; dn(3) = dn(6) = dn(8) = dn(9) = 0, dn(5) =
d n 1 )  = 1 ,d n (2 ) = dn(4) = dn(7) = 2.

the values Vx(q; X . n _ 1 ( s ) l - 1 ) for allX such that X n C X ^ A recursively
given by the formula

with Vx(q; X0, (s)0)= V x [ q ] by definition,

and

It is convenient to represent every summand in the expression (3.5) in the
diagram form as it was done on Fig. 2 for the case when i = 4, j = 7,
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Fig. 2. "Web." On the figure pictured a summand in the expression for V4,7[q] (see
Eq. (3.5)) for which p4=p4 = p5 = p 6 = p 6 = 0, p4 = P 5 = P 7 = 1, P 2 = P 7 = 2 P4 = 3 and there-
fore PH = 4, p5 = 3, Pf, = 0, p-, = 3. In constructing the "augmented" tree graph which
corresponds to the usual tree graph from Fig. 1, n(7) substitute the line connecting the vertices
7 and 4. See also Fig. 3.

where

| Y4\ = 4, | Y5| = 3 and | Y6\ = \ Y7| = 2. Figure 2 also illustrates the fact that
some numbers p (but not the one corresponding to the end index j) can put
on the zero value.

For the following exposition it is also convenient to introduce the
notion of an "augmented" tree graph which can be obtained from the usual
tree graph by replacing every its rib representing Vi,j[g] as a whole with
a "web" graph representing a summand in the expression (3.5). This allows
us to rewrite expression (3.3) for b x (O m ) in the followng form:
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denotes the sum over all the possible "augmented" tree graphs correspond-
ing to the usual tree graph n and a finite sequence \Y1\,..., \Y,,\, Pn(i)! =
P(i)1

( i )! . . . r ) l!--- / ' ( ' ' ) ; !---^ r ' l! ,and

A graphical representation of a summand from formula (3.7) is given on
Fig. 3.

Fig. 3. An "augmented" tree graph. On the picture is given an "augmented" tree graph
corresponding to the usual tree graph from Fig. 2 and the finite sequence | Y1

| = 3, |Y2| =4,
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Proof of Lemma 1. It can be shown by induction that VA(q; Xn-1

( s ) 1 - 1 ) , recursively given by the formula (3.4), can be explicitly written in
the following form:

The assertion of Lemma 1 will be proved if we show that on the kih step
of the cluster expansion we have:

For k = 0 formula (3.9) coincides with expression (2.5), and therefore it is
obviously true. Let us assume that formula (3.9) is true for some k and
show that then it is true also for k+ 1. Indeed, taking into account that
V(q;Xk + 1,(s)k,sk + 1 = l)=KA(q;Xk,(s)1)andVA(q;Xk + 1,(s)i,sk + 1=0)
= VXt (q:Xk , ( s ) 1 ) + VA\X [q], implementing the Newton-Leibnitz for-
mula for the function exp[ —BV A (q ; Xk, (.s)k)]:
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on the left-hand side of (3.9) and using the "cluster property" of the
Poisson measure, one can obtain that

From formula (3.8) it follows that

and therefore, making the following transformation
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we can rewrite (3.10) as follows

which is exactly the formula (3.9) in which k is replaced by k+ 1. |
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4. MAIN RESULTS

Definition 3. Let dist(A, A') denote the distance between the cen-
ters of cubes A and A'. We will say that the many-body potential (2.1)
exponentially decreases on infinity "in the integral sense" if for some a > 0

where

and Sp the group of permutations of (1,...,p}.

Theorem 3. For sufficiently small B the thermodynamic limit for
the distribution functions of a classical system of particles interacting
through the stable3 many-body potential (2.1) which exponentially
decreases on infinity "in the integral sense" exists and can be represented
in the form of the following absolutely convergent series

where bx (O m ) is given by formula (3.3) and

Theorem 4. With the same conditions as in Theorem 3 and with
O l c e D ( A k ) O le D ( A ' ) supported in { X 1 } k and { X 1 ' } ' respectively, there

3 I.e., satisfying the stability condition (2.3).
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exists an independent of A and dist(X0, X0) constant C2 = C2(A, B, B, z)
such that for the same a as in (4.1)

5. THERMODYNAMIC LIMIT. PROOF OF CONVERGENCE

Before proving Theorem 3 we need to show some auxiliary propositions.

Lemma 2. There exists a constant C0 independent of the volume A,
inverse temperature B and "augmented" tree graph N such that

Proof. The left-hand side of inequality (5.1) can be graphically
represented by a "magnified4 augmented tree graph" N' obtained from the
usual "augmented" tree graph by replacing its every polygon component
with two ones. Using the "cluster property" of the Poisson measure
together with the generalized Wick's theorem for Poisson fields and for-
mula (1.7), one can perform an integration with respect to the Poisson
measure on the left-hand side of inequality (5.1). The expression obtained
after such a procedure can be described as a square root from the sum of
all "magnified augmented tree graphs with pairings" corresponding to a
given "augmented" tree graph n (see Fig. 4).

As follows from Corollary 1, the number of such summands does not
exceed Ier (2p n ) ! , where Dn is a set of cubes connected with a given
"augmented" tree graph n and pn the number of points in the cube A.
Using in every such summand over "magnified augmented graphs with
pairings" the Schwarz inequality to the integral (integrals) with respect to
a coordinate (coordinates) of points5 located in the cube A1 and taking
supremum over possible allocations of the other points of the nth polygon,
components of it, we gain the possibility to execute such a procedure for
the (n— l)th components and so on.

822/88/3-4-10

4 We derive the term "magnified" from the fact that the graphical representation of a
"magnified augmented tree graph" looks like a such many times magnified one of the usual
"augmented" tree graph that becomes visible the internal structure of all its polygon com-
ponents which now are doubled.

5 The only possible cases are one or two coordinates in An.
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Fig. 4. A "magnified augmented tree graph with pairings." On the picture is given a part of
one of the possible "magnified augmented tree graphs with pairings" corresponding to the
usual "augmented" tree graph from Fig. 3.

where the factor zn/2 if z < 1 or Z M ( n - 1 ) if z > 1, appears because of the fact
that the minimal number of points in a "magnified augmented tree graph"
(when for all i= 1,..., n |Y| = 1 and all the possible pairings occurred) and
the maximal number (when for all i = 2,...,n p(i) = M and there was not
any pairing) equals n and 2M(n — 1), respectively.

The proof of Lemma 2 will be completed if we show that for some
constant C independent of A and n

To do so, let us rewrite the left-hand side of (5.2) in the following form

As a result, taking into account Definition 3, we obtain that
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where p n ( i ) is the number of points from the ith component of the
"augmented" tree graph n in the cube A andpn(i) = EAED pA(i). Using the
facts that| Dn| < 1 + (M-1)(n- 1)<M(n- 1),

and

uniformly with respect to A and n (see Appendix), where nn is the number
of components of the "augmented" tree graph n which enter the cube A (see
Fig. 3), one can conclude that there exists such an independent from A and
n constant C that

Lemma 3. For the many-body potential (2.1) satisfying the stability
condition (2.3) the following inequality holds:

Proof. In terms of the Poisson field the stability condition (2.3) can
be reformulated as follows: there exists such a non-negative constant B
that for any measurable set XcA the inequality V x [ q ] > —B\xq(x)dx
holds almost everywhere with respect to the measure PA( •). From this
and formula (3.4) by induction (see ref. 5 for details), it follows that
Vx (q; Xi, ( s ) i ) > ~B \x q(x) dx also holds almost everywhere with respect
to P A ( - ) . Finally, using the latter formula together with (1.4), (1.2) and the
inequality |X,,| < |A",| + (M — 1)(n — 1), one can obtain that
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Lemma 4. If the potential energy (2.2) satisfies the stability condi-
tion (2.3) then for any finite6 X and A such that XeA c R3 the inequality
|f(X)| <ez|x| holds.

Proof. From formulae (3.6), (2.7) and the definition of the grand
partition function it follows that

Taking into account that enlarging of the integration domain in the case
when a function under integration is positive may lead only to increasing
of the expression:

we immediately obtain from (5.5) thatfA(X) <e - z |A |\x|e-z|A| =e - z W . |

Lemma 5. If there exist such continuous7 functions Ko(B) and K((B)
that

6 I.e., such that |X|< o.
7 In the neighborhood of zero.
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then for any finite XCR3 there exists the following limit:

The proof can be done by using the well-known technique of equations of
the Kirkwood-Salsburg type, see refs. 2, 27, and 28 for example.

Proof of Theorem 3. As follows from Lemmas 4 and 5, for proving
the theorem it is sufficient to show that estimate (5.6) holds for sufficiently
small B with some continuous Ko(B) and K(B). Doubly using the Schwarz
inequality to the integral with respect to the Poisson measure in the expres-
sion (3.7) for bx ( O m ) we get

Making use of estimates (5.1) and (5.4), obtained in Lemmas 2 and 3, and
taking into account that, as it follows from formula (1.4),

is a constant dependent only from the function Om, we can rewrite (5.8) in
the following form:
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Using (3.1) and denoting Ko = CoC1(B)|x1| and C'0(B) = C0C1(B), one can
rewrite (5.9) as follows:

Defining "simple" augmented tree graphs as such augmented tree graphs for
which p(i) = | Yi| + 1, Vi = 2,..., n, we can consider an arbitrary augmented
tree graph as a particular case of the corresponding "simple" augmented tree
graph when some cubes A|,..., A|Y| coincide, see Fig. 5.

So, omitting in formula (5.10) the division by pn(i)! | Y,|!, we can, not
violating the inequality, extend summation over cubes A1,..., A\*«\ in such
a way that some of them may coincide, restricting at the same time summa-
tion over augmented tree graphs n only by the "simple" ones:
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It should be noted that, although after such resummation some summands
from the right-hand side of formula (5.10) will be counted more then one time
due to the fact that some of the "augmented" tree graphs can be obtained
from different "simple" augmented tree graphs and in a different way from the
same "simple" augmented tree graph, no one of them can be lost.

Consequently executing summation with respect to A1,..., A|Y| and
taking maximum8 with respect to the "initial" (see Fig. 5 for explanation of

8 This is not necessarily for translationally invariant potential.

Fig. 5. A "simple" augmented tree graph. The augmented tree graph from Fig. 3 can be
obtained from the given "simple" augmented tree graph for example when the cubes A6, A7
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this term) cube of the ith component of the "simple" augmented tree graph
for i = n,..., 2, we obtain after n — 1 steps that

Substituting (5.12) in (5.11) and taking into account that

where K'(B) = m a x { | X 1 | , ( M - 1 ) } C1(B) Finally, summing over \Y2\,...,
| Yn\ and using the following estimate(5)

The proof of Theorem 4 is a sequence of the convergence of the cluster
expansions, i.e., Theorem 3, see refs. 29, 9 for example.

We conclude our paper with a remark that the same results with little
changes in proofs may be obtained for the many-component charged

we come to
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particles systems with many-body interaction similar to the one given by
formula (2.1).

APPENDIX

Here we are going to show that formula (5.3), used in the proof of
Lemma 2, holds uniformly in A and n. First of all, let us renumerate all the
components of a given augmented tree graph n entering an arbitrary fixed
cube A (i.e., for which p A ( i ) = 0 ) in the order of increasing of their
diameters d n ( i ) , i.e., construct such a finite sequence i1,..., in that for all k
and / such that 1<k<1<nA , d iam{n( i k ) } sgdiam {n(i1)} and PA(ik) =0,
PA(il) =0.

It is easy to see (for example, by putting the cube A in the center of
an imaginary cube with the rib's length ( 2 d i a m { n ( i k ) } +1) and counting
the maximal number of different graphs enclosed in it and entering A) that
even for the most compact graph

Inverting the inequality (A.1), we obtain that diam{n(ik)} >
1 { ( k / ( M - 1))1[3M-1)] and therefore

Together with the obvious inequality
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which estimates the number of points from the graph n in cube A, it allows
us to write that

It is easy to see that for any M>2 the right-hand side of (A.2) becomes
vanishingly small with nA -» oo uniformly with respect to A and n.
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